レーザー3Dプリンタはどのようにして工業生産に革命をもたらすのか

レーザー3Dプリンタはどのようにして工業生産に革命をもたらすのか

Advances in digital technology have enabled additive manufacturing to revolutionize industrial production.  Indeed, by incorporating fast, precise methods to create fully unique three-dimensional objects, additive manufacturing may change the world.  Also known as 3D printing, additive manufacturing is the process of joining materials to make objects from a 3D model.  This is done by adding layer by layer from the bottom up. Laser Additive Manufacturing (LAM) enables new approaches in product design.  It uses laser beam technology to melt and solidify material in a powder bed.  This allows for a new freedom in design. Let’s explore how this technology is revolutionizing industrial production.

 

LAM Processes

There are three types of laser additive manufacturing processes. Stereolithography (SLA), Selective Laser Sintering (SLS) and Selective Laser Melting (SLM).  SLA uses UV laser sources to solidify photo-reactive resins layer by layer with fine details. SLS uses CO2 lasers to sinter polymers such as polyamides that are in the form of powder.  Fiber lasers melt layers of fine metal powder together to form the final structure in the case of SLM. In all three LAM processes, the laser beam scanner steers the laser beam at high speed to the target locations on the build plane defined by the 3D model.  The scan controller and software convert the 3D model job into a series of motion and laser control commands to synchronize laser beam scanner motion and laser firing.

特にSLMの場合、LAMアプリケーションを拡張するための2つの重要な課題は、部品の製造コストの削減と部品の品質の向上です。 レーザー・ビーム・ステアリングは重要であり、スキャナーとコントローラーの選択は、これらのシステム・レベルのパフォーマンスに直接影響します。 たとえば、スキャナーがレーザー・ビームをビルド平面のターゲット位置にどれだけ正確に誘導するかによって、パーツの幾何学的精度が決まります。 高品質の部品では、均一な材料特性を確保するために、材料に均一なレーザー密度を供給する必要もあります。 これには、レーザーの発射/変調とスキャナーの動きを正確に調整する必要があります。 レーザーがオンのときのスキャン速度とレーザーがオフのときのジャンプ速度も、全体的なプロセス・スループットを決定します。したがって、製造される部品あたりのコストが決まります。

 

Industries and Markets

Manufacturers have been using stereolithography since the 1990s to produce medical models for implants and prototyping parts. Manufacturers have been using the medical models to aid the manufacture of personalized implants. With the capability to build larger 3D parts and quick turnaround, prototyping parts made by SLS process are increasingly used in the design cycle for automotive, aerospace, military and electronics hardware. Those polymer-based 3D parts are sometime also used as final products. In recent years, Selective Laser Melting has shown the most rapid growth as it builds functional parts that go into implants, dental, automobile and aerospace. SLM technology has demonstrated the capabilities to build complex geometries and light-weight structures that are difficult to achieve with conventional subtractive manufacturing methods. It is also flexible and cost-effective when building custom parts such as individual dental parts.

 

Technology

There are many galvanometer-based laser beam scanner products on the market today. Each configuration has benefits and limitations depending on the LAM system level requirements and the priority of those requirements. The typical factors under considerations when choosing a scanner include:

  • レーザー波長と光パワー
  • フィーチャー・サイズまたはビーム・サイズ
  • ビルド・レートまたはスキャン速度
  • 位置精度
  • 安定
  • ビルド・サイズまたはエンベロープ
  • 統合のしやすさ
  • バジェット

 

SLA, SLS and SLM use different types of laser and laser power and require different beam size on the build plane.  Manufacturers need to tailor the scanning mirrors and coatings to accommodate the difference. And the physical size of the finished part, build rate and minimal feature size often dictates the complexity of the laser scanning system and its integration.

 

Novanta’s Solutions for Laser Additive Manufacturing

Cambridge Technology offers a wide range of scanning products that system integrators can choose from based on the trade-offs of various requirements. For example, a desktop system may be best served by an 83xxK series XY galvo set mounted on a small block and driven by a low-noise analog server for a very compact scanning footprint. Also available is an easy-to-use DC series digital server.  Conversely, a machine producing large, high-quality metal parts may require multiple 3-axis full-digital scan heads for high accuracy and stability. In addition to the various options of XY scanning sets and scan heads, adding intelligent scanning control offered by our ScanMaster Controller (SMC) orchestrates laser lasing with scanning motion, further improving accuracy, processing flexibility, and throughput.

 

レーザー積層造形がこの新しいテクノロジーを採用する人々に工業生産に革命をもたらしている理由はたくさんあり、多くの人が毎日の生産でその利点を認識しています。 LAMは、従来の方法では不可能だった新しい工業デザインを可能にし、システムの作成と交換を容易にします。 そして最後に、レーザー・ビームスキャン技術は、レーザー積層造形による機能部品の製造の成功において基本的な役割を果たします。 LAMソリューションの詳細については、ここをクリック