
Technical Bulletin AN00009

1 © Novanta Corporation. All rights reserved.

ScanMaster Designer Database Marking

1 Introduction
Database Connectivity is useful when it is necessary to retrieve data from external database files such
as Microsoft Access® (.mdb) and Microsoft Excel® (.xls) files. Typical applications for database
connectivity include the reading of serial numbers for production unit identification and the reading of
barcode information or batch number identification codes. Additionally, geometric information obtained
through a database file provides a method of dynamic manipulation of the geometry of the image.

Database Connectivity helps you to automate your repetitious marking, while still maintaining the
highest levels of quality.

The following sections are included in this document:

Introduction

Database and SMD environment preparation

Database automation creation

Add Queries

Scripts

Contact Us

Keywords: Database, Microsoft Access & Excel, ScanMaster Controller, Script, Script Assistant

2 Database and SMD environment preparation
An Excel file named Calories_And_Sugar.xlsx will be used in the example presented in this
Application Note. This Excel spreadsheet contains different types of fruits and vegetables with their
calories, vitamins, and sugar values. The following figure shows Calories_And_Sugar.xlsx.

Figure 1 - Example Spreadsheet

Technical Bulletin AN00009

2 © Novanta Corporation. All rights reserved

3 Database automation creation
Do the following:

1. Left-click the Database icon in the Project | Automation panel of the ScanMaster Designer

Figure 2 - The Database Connectivity Properties window

Technical Bulletin AN00009

3 © Novanta Corporation. All rights reserved

2. With the From Database File radio button selected, left-click the Browse button beside
the File Name field of the Database Connectivity Properties window.

Figure 3 - The File Name field of the Database Connectivity Properties window

4 Add Queries

Queries are used to extract the necessary data from the data source(s) and to implement data filtration.
SMD supports simple queries, queries with conditions, and queries with conditions that have dynamic
arguments. Refer to the following subsections for examples of how each of the three query types could
be implemented for the Excel file Calories_And_Sugar.xlsx:

• "Simple Query" (below)
• "Query with a condition" on page 7
• "Query with a condition that has a dynamic argument" on page 9

4.1 Simple Query
In the following example, a simple query is created to extract the name of the fruit or vegetable and its
corresponding calories for marking on a Display plate. The extracted data is then fed dynamically into
the marking job.

Do the following to create the simple query:
1. Left-click the Add button in the Database Connectivity Properties window. This displays the Query

Editor as shown in the Figure 4 - The Query Editor on page 5.
2. Enter a name for the query in the Query Name field. The ScanScript code will refer to the query

by this name.
The Query Editor includes a table for each worksheet in the Excel file, which are shown as
[Sheet1$], [Sheet2$] and [Sheet3$] in the following figure. [Sheet1$] contains the fields in the
first worksheet of the Excel file.

NOTE: As with most Excel worksheets, the first row of the worksheet contains column headers
rather than data.

Technical Bulletin AN00009

4 © Novanta Corporation. All rights reserved

3. Select the FruitandVegetable and Calories fields in the [Sheet1$] table.
4. Press the TestQuery button in the upper-right corner of the Query Editor to apply the query to

the Excel file. The query results (if any) will be shown in the display area beneath the TestQuery
button (see the following figure).

Figure 5 - Query Generated and Tested

Technical Bulletin AN00009

5 © Novanta Corporation. All rights reserved

5. After confirming that the specified query is working correctly, press the OK button in the Query

Editor. This completes the Database connectivity, and the Database Connectivity Properties
window will be displayed with the query shown in the Queries display area (see the following
figure).

Figure 6 - The Database Connectivity Properties window

Database connectivity generates scripts that might need some adjustments. See Section 5 ("Scripts")
on page 10 for more details.

Technical Bulletin AN00009

6 © Novanta Corporation. All rights reserved

4.2 Query with a condition
Many queries require the data to be fitered by one of column values. In this example, the query will
return for marking only those fruits or vegetables that have at least 150 calories.

Do the following to create a query with this condition:
1. Select Query1 in the Queries display area of the Database Connectivity Properties window.

NOTE: Query1 is the query that was created in Section 4.1 ("Simple Query") on page 4.

Figure 7 - The Queries display area of the Database Connectivity Properties window

2. Left-click the Edit button below the Queries display area of the Database Connectivity
Properties window. This displays the Edit Query dialog box as shown in the following figure.

Figure 8 - Edit Query

3. Left-click the Query Generation Helper button in the Edit Query dialog box. This displays the
Query Editor.

Technical Bulletin AN00009

7 © Novanta Corporation. All rights reserved

4. Select Greater Than from the dropdown list in the Operation column of the Calories row.

Figure 9 - Query Operation

5. Double-click in the Condition field of the Calories row, type 150 in that field, and press the OK
button. The condition will be added as a "WHERE" statement to the query. As shown in the
following figure, the updated query will appear in the Queries display area of the Database
Connectivity Properties window.

Figure 10 - Updated Query

Because the condition is applied when the database is accessed, the database is already filtered
before marking begins. Hence there will not be any change in the script; it will only mark those fruits
and vegetables that have a Calories value greater than 150.

Database connectivity generates scripts that might need some adjustments. See Section 5 ("Scripts")
on page 10 for more details.

Technical Bulletin AN00009

8 © Novanta Corporation. All rights reserved

4.3 Query with a condition that has a dynamic argument
The value that you want to use in the Condition field of a query may only be known at runtime. When
this is the case, you would create a query that has a dynamic argument as its condition. The following
example returns for marking those fruits and vegetables whose Calories are greater than "x" when
the value of "x" is specified at runtime.

Do the following to create a query that fits this scenario:

1. To indicate that the value of the condition is provided dynamically, the user has to enter
"{variableName}" in the Condition field of the Query Editor. Do the following to find
FruitAndVegetable names with calories greater than “x” (which will be specified during
runtime):

a. Specify a Greater Than condition in the Operation field of the Calories row.
b. Enter (x) in the Condition field of the Calories row.

Figure 11 - Dynamic Query Condition

2. As the condition is set with dynamic argument, the script must change to include the value of
the argument when defining a query to read a database.
The following commands dynamically set the Calories value to be greater than 200 and select
9 records for marking:

Database1.Init() --Initialize database
recordset = Database1.Query1(200) --Get resultant recordset which contains
[FruitAndVegetable] and [Calories]

length = recordset.Length --length of the recordset

Database connectivity generates scripts that might need some adjustments. See Section 5 ("Scripts")
on page 10 for more details.

Technical Bulletin AN00009

9 © Novanta Corporation. All rights reserved

5 Scripts
Each database generates scripts that will allow the user to see the database variable name and
connect the database script with the image script. Click on the Script View link in the Database
Connectivity Properties window to see database script as shown in the following figure.

Figure 12 - Database query

Technical Bulletin AN00009

10 © Novanta Corporation. All rights reserved

1. Select the Script Assistant icon in the ScanMaster Desginer Ribbon to view real-time logger
that acts as a server, connecting between the scan card and the dll/database.

NOTE: Always run ScanScript Assistant before you start marking a database.

Figure 13 - The ScanScript Assistant icon

Figure 14 - ScanScript Assistant

1. Writing a script. Database1.Init () has to be called to initialize the database. Here “Database1”
is the name of the database automation object.
To execute the specified query on “Database1”; can be done by calling recordset =
Database1.Query1(). Here the recordset is the resultant record set from the query, so a
resultant record set only for select queries.
User can call utility methods and properties of recordset object such as:

Technical Bulletin AN00009

11 © Novanta Corporation. All rights reserved

Call recordset.Length to get total number of records returned from the query.
Call recordset.ColumnCount to get number of columns in the recordset.
Call recordset.GetColumnNames() to get the column names of the recordset. This will be
returned as string array. For loop can be used to iterate through this string array.
Call recordset.GetRecord(recordIndex) to retrieve the specific record from the result. The
record object which can be retrieved from recordset.GetRecord(recordIndex) will contain
values in each column.
Write recored = recordset.GetRecord(1) to get a value in specific column

And these values can be readily used in any marking purpose.
2. Delete ScanAll() from script and complete script example for marking FruitAndVegetable &

Calories including marking parameters such as Mark and Jump Speed, all Delays and Laser
parameters is as shown in the following script example.

SetUnits(Units.Millimeters)
SetAngleUnits(AngleUnits.Degrees)

Laser.Power = 35.0 -- Set the laser power
Laser.Dutycycle1 = 50.0 -- set laser duty cycle
Laser.Frequency = 100.0 -- set laser frequency

Laser.MarkSpeed= 1000.0 -- set the Mark speed
Laser.JumpSpeed = 2000.0 -- set the jump speed

Laser.JumpDelay = 100.0 -- set jump delay
Laser.MarkDelay = 100.0 -- set mark delay
Laser.PolyDelay = 30.0 -- set poly delay
Laser.LaserOnDelay = -100 -- set Laser ON delay
Laser.LaserOffDelay = 120 -- set Laser OFF delay

--Connect with script assistant
ScriptAssistant("192.168.2.21", 5032)

--Initialize database
Database1.Init()

--Get resultant recordset which contains [FruitAndGegetable] and
[Calories]
recordset = Database1.Query1()

--length of the recordset
length = recordset.Length
Report("Length of recordset "..length)
--Number of columns in the returned recordset
columnCount = recordset.ColumnCount
Report("Number of columns "..columnCount)
--get column names this will be a string array
columnNames = recordset.GetColumnNames()
--iterate though column Names array and get column names
for columnIndex=1,columnCount do

Report(columnNames[columnIndex])
end

--iterate through records

Technical Bulletin AN00009

12 © Novanta Corporation. All rights reserved

for recordIndex=1,length do

record = recordset.GetRecord(recordIndex)
local FruitAndVegetable = record[columnNames[1]]
local Calories = record[columnNames[2]]
Report(FruitAndVegetable.." "..Calories.." ") -- Reporting to

Output message window

FruitText = Text.Horizontal()
FruitText.Font = "SIMPLEX.OVF"
FruitText.X =-40
FruitText.Y =0
FruitText.Height =2
FruitText.text = record[columnNames[1]]
Image.Text(FruitText) --Mark FruitAndVegetable

FruitText.X = -20
FruitText.text = record[columnNames[2]]
Image.Text(FruitText) -- Mark Calories

Laser.WaitForEnd()
message = Smd.MessageBox("Marked Record #"..recordIndex.. " Press

Yes to mark Next Record", "Next Record", Smd.MessageBoxButton.YesNo,
Smd.MessageBoxIcon.Question)

if (message == "Yes") then

Report("Marked Record #"..recordIndex)
else

break
end

end

The above script executes the query specified in database automation editor and it will mark
FruitAndVegetable and Calories in same line. It will populate the Message Window as shown
below showing that record # is marked and system is ready to mark for next record as seen in
Figure 15 - Record Message (below)

Figure 15 - Record Message

	1 Introduction
	2 Database and SMD environment preparation
	3 Database automation creation
	Figure 2 - The Database Connectivity Properties window

	4 Add Queries
	4.1 Simple Query
	Figure 4 - The Query Editor
	Figure 5 - Query Generated and Tested
	Figure 6 - The Database Connectivity Properties window

	4.2 Query with a condition
	Figure 7 - The Queries display area of the Database Connectivity Properties window
	Figure 8 - Edit Query
	Query Editor.
	Figure 9 - Query Operation
	Figure 10 - Updated Query

	4.3 Query with a condition that has a dynamic argument
	Figure 11 - Dynamic Query Condition

	5 Scripts
	Figure 12 - Database query
	Figure 13 - The ScanScript Assistant icon

